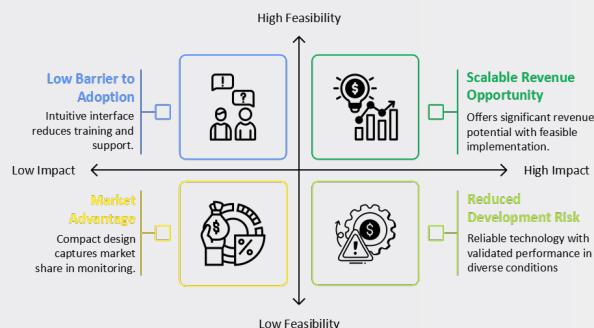


REVA®

REVA® In-Situ

REVA In-Situ is a portable device that uses photonic technology to measure glucose and various blood components without needles or invasive procedures. It shines light through the skin and analyses the reflected light to detect these measurements. The device uses AI to provide real-time results and can be programmed to detect additional substances. It is designed for use in hospitals, research labs, and field settings.



Technology Overview

REVA In-Situ is a non-invasive platform that combines photoplethysmography (PPG) with a visible to near-infrared (Vis-NIR) spectral engine for measuring blood parameters without needles. Equipped with edge computing, the device performs real-time, intelligent data processing without relying on external systems. Its modular design allows customisation with reference samples to further enhance accuracy and uses AI to make smart predictions.

Technology Benefits

Technology Benefits Prioritisation

• Instant results

Built-in screen shows glucose levels immediately for quick decisions.

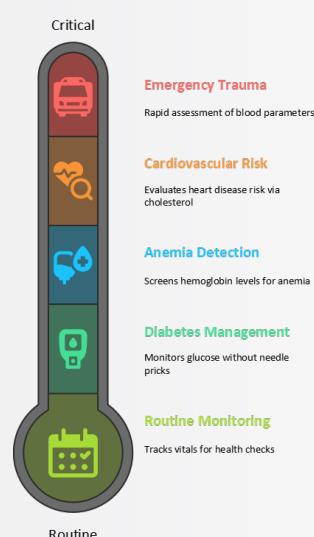
• Advanced Quantised Machine Learning

Incorporates intelligent algorithms to ensure good and consistent blood parameters predictions.

• High-quality sensors

Integrated sensor array provides lab-grade accuracy in a convenient handheld form factor.

• Edge Computing


Enables rapid, on-device data processing without relying on external systems or internet connectivity.

• Rechargeable Battery

Rechargeable battery lasts for extended use in any location.

Applications

Non-invasive blood monitoring ranges from routine to critical.

Key Features

• No needles needed

Measures blood sugar through the skin without painful finger pricks, no strips, safe and eco-friendly.

• Portable Design

Compact and lightweight for easy portability, well suited for deployment in clinical settings, diagnostic laboratories, and on-the-go use applications.

